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SUMMARY 

The linearized three-dimensional hydrodynamic equations are solved numerically for periodic motions, 
subject to a linear slip condition at the bottom. The structure of the linearized equations allows an exact 
uncoupling of the horizontal and vertical computations, so that they may be achieved sequentially rather than 
simultaneously, and without iteration. The solution strategy involves simple horizontal Co finite elements for 
the description of free surface elevation. Vertical variations in velocity may be treated analytically for some 
special variations of viscosity with depth; more generally the finite element method is employed with one- 
dimensional linear elements. Because of the uncoupling, the entire three-dimensional solution scales as a two- 
dimensional vertically averaged problem. The limiting two-dimensional problem may be solved as a 
Helmholtz-type problem for elevation alone, using established techniques. 

Solutions for test problems are compared with known analytic solutions. Some simple gridding rules are 
established for the vertical discretization. Finally, a field application is shown involving the tidal response of 
the Lake Maracaibo (Venezuela) system. 
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INTRODUCTION 

This paper deals with the fluid mechanics of large estuaries and coastal regions, and in particular 
with the large-scale, horizontal motions forced by wind and tide. In nearly all practical applications 
the naturally occurring geometry (both lateral boundaries and the bathymetric profile) exerts 
major influences on the motion. Thus useful models must resolve arbitrary geometry readily. This 
is a natural strength of the finite element method and we seek here to establish its validity and cost- 
effectiveness. 

Effective two-dimensional harmonic solutions have been demonstrated by Pearson and 
Winter,' Le Provost and Poncet,' Jamart and Winter,3 Walters4 and L y n ~ h . ~ , ~  In these 
applications the vertically averaged equations are solved with the bottom stress represented in 
terms of the vertically averaged velocity. In reality a significant discrepancy can exist between 
these two quantities, both in timing and in direction. Hence, the need arises for full three- 
dimensional resolution of the velocity profile even when only the vertically averaged solution 
is of interest. 

Vertical velocity profiles have been studied numerically in several ways. The work of Blumberg 
and Mellor' is representative of the full finite difference approach. Davies' and Heaps and Jonesg 
use eigenfunction expansions in the vertical, a distinct and important alternative to that pursued 
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here. Teelo uses either exact vertical solutions for simple viscosity functions or finite differences in 
the vertical for the more general case, and derives approximate bottom stress parameters for use in 
a two-dimensional model. This latter work is the closest in spirit to the present paper, which uses 
finite elements throughout and an exact bottom stress parametrization. 

In the present work we solve the three-dimensional linear equations without tampering or 
further approximating the bottom stress expression. We exploit the established strengths of the 
finite element method for the horizontal structure, and purposefully use the simplest possible 
vertical representation: analytic when possible, simple finite elements otherwise. The choice of 
vertical strategy reflects our desire to simplify as much as possible the pre- and post-processing, 
which we find to be a significant consumer of analyst and machine time. Additionally, we seek here 
to pave the way for a fully non-linear three-dimensional time-stepping model based on simple 
elements. The formulation provides two options, so that either conversion of existing two- 
dimensional codes or construction of cleaner three-dimensional codes is facilitated. 

GOVERNING EQUATIONS 

As in Reference 11 we employ the linearized continuity and momentum equations, assuming 
space-time separation of the form q(x, t )  = Re [Q(x)ejw'], with Q the complex amplitude of q: 

joi + V.(hV) = 0 ,  (1) 

in which c ( x , y )  is the complex amplitude of the free surface elevation, V ( x , y , z )  is the complex 
amplitude of the horizontal velocity, V ( x ,  y )  is the vertical average of V ,  o is the radian frequency, 
j is the imaginary unit, J( - l), h ( x ,  y )  is the bathymetric depth, f is the Coriolis vector, directed 
vertically, N ( x ,  y ,  z )  is the vertical eddy viscosity, g is the acceleration due to gravity, ( x ,  y )  are the 
horizontal co-ordinates, z is the vertical co-ordinate, positive upward, and V is the horizontal 
operator @ / a x ,  all$). 

At the surface ( z  = 0) and bottom (z = - h), boundary conditions are enforced on stress: 

in which h Y ( x , y )  is the complex amplitude of the atmospheric forcing and k is a linear slip 
coefficient. Note that the bottom stress is given in terms of the local velocity, not v. Vertical 
averaging of (2) yields 

k 
j o V + f  x V + - V ( - h ) =  h - g  V[+hl,  (5 )  

in which the boundary conditions have been incorporated. 
A key feature of these equations is that the bottom stress may be re-expressed in terms of V and 

hl without introducing any further assumptions or simplifications. This feature was introduced by 
Lynch and Officer'' for the case 'f' = 0 and is generalized below. The impact of this is to enable the 
solution of ( 1 )  and (5) as a two-dimensional, horizontal system, either analytically as in the previous 
paper, or on finite elements as described here. The numerical approach for this two-dimensional 
problem has been elaborated elsewhere for vertically homogeneous problems2-6*'z and requires 
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only minor modifications to fit the present, more general context in which the bottom stress may be 
out of phase with 0 and/or in a distinctly different direction. The numerical method which emerges 
for the three-dimensional system thus involves solving the vertical and horizontal portions of the 
problem separately, in three sequential steps: 

Express the bottom stress in terms of 0 and Y. This involves solution of simple one- 
dimensional diffusion equations either analytically, as in Reference 11, or numerically. In the 
latter case we show below that finite element solutions on common linear elements suffice, 
involving nothing more than tridiagonal matrix inversions. 
Solve the horizontal system, equations (1) and (5),  for C and the pressure gradient, g VC. As 
mentioned above, established methods using simple linear finite elements may be brought to 
bear here. 
Solve the momentum equation (2) for V ,  with known pressure gradient. This job is similar 
to (a) above and in fact the solution for V may be reconstructed from information saved 
in step (a). 

We emphasize that steps (a)-(c) are sequential and need no reiteration. As a result the operation 
count for the entire three-dimensional problem scales with the two-dimensional calculation, step 
(b). Specifically, if there are N nodes in the horizontal grid, with half-bandwidth J N ,  then the 
number of operations scales with N z  for direct, banded LU decomposition.+ Additional economy 
in step (b) is available if one uses the ‘wave’ or Helmholtz equation approach, wherein a second- 
order differential equation for C alone replaces the coupled set (1) and (5) in 5 and 0, with attendant 
reduction in the limiting matrix decomposition operations by a factor of 33.1 By taking advantages 
of these features, we are able to achieve three-dimensional solutions fbr systems with 1000 nodes in 
the horizontal in 1-2 minutes of CPU time on a microcomputer with LINPACK rating of 0.16 
MFLOPS.’ 

NUMERICAL METHOD 

The three-dimensional system is discretized using conventional finite elements in the horizontal 
plane: 

in which 4i are the horizontal finite element bases, and Z = z/h is the normalized depth (see 
Figure 1). We will use both continuum and finite element representation of the V i ( Z ) .  In either case 
we employ a Galerkin method in the horizontal, with the inner product notation (.;) indicating 
a quadrature approximation to J J (. , .) dx dy. As in previous papers (e.g. Reference 14) we employ 
‘integral lumping’, in which the quadrature points coincide with the nodes. This results in the 
diagonalization of the mass matrix, an enormous advantage in dealing with the momentum 
equation. 

+The LU decomposition of a matrix obtained a mesh with N nodes with 1 degree offreedom per node and bandwidth J N  
will require N x JN x JM = N2 operations. 
1 A formulation resulting in 3 degrees of freedom per node would yield a matrix with 3A” equations and of bandwidth of 
order 3 JN. Thus the number of operations for the LU decomposition would be 3A”  x 3 JN x 3 JN = 33N2. 
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Re 

Figure 1. Discretization of velocity on horizontal finite element grid with the complex functions V i ( Z )  defined beneath each 
node. Z = z/h 

Vertical structure and bottom stress 

To begin with, we investigate the solution of the momentum equations (2)-(4) as a response to 
gravity and wind forcing. Of course the gravity force is at  the outset unknown; the key is to extract 
the bottom stress parameters in spite of this fact. To enhance this exposition, we define the gravity 
force as 

G =  -gV(. (8) 
(i) Non-rotating systems. Fundamental to the solution of (2) is a simpler, scalar diffusion 

equation: 

j W p - -  d ( N d , >  -- = G  , 
d Z  k2dZ 

with boundary conditions: 

- k I )  (Z=O), N dP 
h d Z  

N d P  -kp ( Z =  -1). 
k d Z  

(9) 

In the absence of rotation, both V, and V,, satisfy (9)-(11) with appropriate values of G and I). As in 
Reference 11 we express the solution to (9) as the sum of homogeneous solutions p 1 ,  p z  plus the 
particular solution G/( jo) :  

G 
JW 

P=-+c1cLl(z)+c2Pz(z). (12) 

Application of the boundary conditions determines the constants c1 and c2. The result is 

hZ E(Z)  

with 
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and 

where the overdot indicates d/dZ. Equation (13) may also be arrived at by inspection of the linear 
system (9)-(11) in the intuitively appealing form 

with 
P(Z) = GPl(Z) + *PZ(Z) 9 (1 7 4  

P , ( Z ) = ,  [ 1--- A:’], P 2 ( Z )  = [&TI, 
JW 

in which P l ( Z )  is the solution to equations (9)-(11) with G = 1, II/ = 0, and P 2 ( Z )  is obtained with 
G =O,$ = 1. Form (13) is useful when dealing with closed-form solutions, whereas form (17a) 
is much more appealing when solving (9)-( 1 1) numerically. 

The unknown G in (17a) may be replaced with ji (the vertical average of p )  by first taking the 
average of (1 7a) and rearranging: 

Elimination of G in (17a) then yields 

and the bottom stress is then given by 

Note that this is the desired form-bottom stress in terms of ,ij and $, independent of the value 
of the gravity term G. To facilitate the linkage to the two-dimensional problem we define bottom 
stress parameters z and a: 

so that the final result is 
k , ~ (  - 1) = z h j  - a$h 

Note that z and a are dependent upon w, N(Z) ,  h and k,  and thus vary with frequency as well 
as ( x , y )  location. 

Equivalent expressions for z and a may be obtained in terms of the homogeneous solutions ,ul 
and p 2 :  
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(25) B 

In the Appendix we record some useful identities which lead to alternative expressions for z and CI. 

(ii) Rotating systems. When rotation is present in the system, we define two linear combinations 
of V, and V,: 

(26) V + j V ,  - Vx -jV, v +  =x 
2 2 '  

, v =- 

and the inverse relations 

Vx=v++v- ;  jV,=v+-v- .  (27) 
Equations (9)-(I 1) govern V* with the frequency shifted to w k f :  

(28) 

(29) 

(Z = - l), (30) 

N dv' 
h d Z  

- h$' (Z=O), 

= kv' N dv' 
h d Z  
-~ 

where the forcing terms are 

From the derivation above, we thus have two values of z and CI, one each for v +  and v-: 

(33) kv'( - 1) = z'hv' - u'$*h. 

The bottom stress kV( - 1) may be reconstructed using (27) and (33): 

k V ( -  l ) = ( T ) h V - j ( v ) $ ?  z+ + z -  x hV 

-~ ("+ ;"-) h I + j  ("';*-) ~ 2 x h I ,  
(34) 

where 2 is the unit vector along the z axis. Finally, use of (34) in the vertically averaged momentum 
equation yields 

j w P + f x P + z ' O =  -gVg 

where the quantities f ,  z' and I' all contain contributions 
+ I', (35) 
from the bottom stress: 

z +  + z -  z'=- 
2 '  (37) 
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Equation (35) has the form of the conventional two-dimensional momentum equation; however all 
of the vertical detail is embodied without loss of information in the parameters f ,  z' and l'. These 
'virtual' parameters are shifted in magnitude, phase and (in the case of l') direction from their 
physical three-dimensional analogues which are customarily used without modification in two- 
dimensional analyses. From (35) we may in turn express 0 in the conventional two-dimensional 
form: 

(39) 
- (jo + z')(g vy - l') - f x (g  vy - Y )  

(jw + 2')' + f " V = - (  

Equations (35) and/or (39) provide a simple recipe for upgrading any conventional program 
which solves the two-dimensional harmonic equations-one need only compute and use the 
virtual parameters f ,  z' and I' in place of their physical values. Additionally, the above analysis 
provides a framework for studying bottom stress, for example as in Reference 11 for the special case 
of constant N .  

The equivalent of (39) may however be obtained more simply by avoiding the intermediate step 
of computing the bottom stress. With 

v'(Z) = G'P:(Z) + +'P:(z )  (40) 

we may reconstruct V,, V,, according to (27). The result, 

V ( Z ) = G ( p ' l p ' ) - j (  P:  - P ;  ) & x G + l (  P: + P i  > j (  P i  - P i  )&x",  (41) 

is computationally more appealing but intuitively less informative. (Recall that G = - g Vy.) The 
vertical average of (41) is straightforward. Equation (41) may of course be expressed in terms of pf,2 
via equation (17b). 

The quantities f', z', l', or equivalently Pf ,2 ,  are ultimately needed for the horizontal solution at 
all nodes in the horizontal mesh. In some simple cases analytical expressions are available (a partial 
summary can be found in Reference1 1). More generally we obtain Galerkin finite element solutions 
to equation (9) on simple one-dimensional linear elements. In this case four tridiagonal solutions 
are required under each node: either or Pf,'. These then generate the required parameters in 
equations (39) and (41). The four tridiagonal solutions are saved for reconstruction of V ( 2 )  after [ 
has been obtained (see the section on vertical structure below). 

Horizontal structure: computation of ( 

Equations (1) and either (35), (39) or (41) constitute a conventional shallow-water problem in ( 
and 9. Based on prior e ~ p e r i e n c e ~ . ~ , ' ~  we avoid the primitive equation approach in which (1) and 
(35) are solved simultaneously. Instead we use a 'wave' or Helmholtz equation, i.e. a second-order 
equation in [ obtained by eliminating 0 from (1). Using (1) and (39) 

(jo + z')(gh Vy - hl') - f x (gh vy - h Y )  
j o y  - V. (jo + T ' ) ~  + f" ] = o ,  

or equivalently, using the average of (41), 
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j o [ - V . [ ( P ' : P ; ) g h V [ - j (  P: - P ;  ) P x g h V [ - (  P: + P ,  )hY 

+ j (  Pz' - P ;  )P x h Y ] = O .  

From (42) and (43) we obtain the Galerkin forms 

and 

(43) 

We express [ in the finite element basis 4, equation (6), and solve on simple Co elements. All 
domain and boundary integrals are evaluated numerically, with quadrature points at the nodes. 
Boundary conditions on V-fi are enforced as natural conditions via the surface integrals. Boundary 
conditions on [ are satisfied exactly, and the associated Galerkin equations are used to compute 
9 .h  via the surface integral. This procedure conserves mass exactly in the numerical solution.6 

Vertical structure: computation of V 

Once [ is known, we reconstruct V ( Z )  under each node from the saved P ( Z )  or p(Z) .  A Galerkin 
form of (41) is employed, together with the discretizations (6) and (7). The result using integral 
lumping is especially simple: 

V i ( Z )  = (" : p' ) iGi  - j (  P' - P ;  )iP x Gi + ( P2' + P;  )iYi - j (  " 1 '; ) P x Y i ,  (46) 
i 

with nodal gravity forcing defined as 

(recall that (. , .) indicates integration over (x, y )  via nodal quadrature). In effect,a simple post- 
processing of the [ solution returns V i ( Z ) ,  with no further matrix manipulations. 

When V .  fi is prescribed on a boundary, we satisfy this condition exactly, in the following manner. 
First, a nodal normal hi is defined.I5 In our case we retain the simple definition 

from previous studies (e.g. Reference 14). We then retain the local tangential component of(46) and 
sacrifice the normal component in favour of the boundary condition. 
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When only O-ii is known, e.g. at a boundary where [ is specified, we use this information to 
compute G 4 .  From the vertical average of (46) we have 

where (n, t )  are a local right-handed co-ordinate system. We retain the tangential component of G 
as computed by equation (47) and sacrifice the normal component in favour of (49), which enforces 
the normal constraint on 0. 

TEST CASES: ANALYTICAL VERTICAL STRUCTURE 

For a first series we used the simplest vertical structure, aN/dZ = 0, and the exact analytic solutions 
for the vertical from Reference 11. The sequence of computations is summarized as follows: 

(a) Compute z', a' for each horizontal node using equations (24) and (25). 
(b) Compute z', f and I' for each node via (36)-(38). 
(c) Solve (44) for [. 
(d) Reconstruct Vi(Z) beneath each node via (46) subject to the boundary conditions. 

In this series the exact homogeneous solutions are 

j u h 2  
P1,2 = exp ( L zJ( "-)) 

and the relations between p and P are given by equations (14)-( 17). As a base of comparison we use 
the solutions of Lynch and Gray.I6 Because these require constant values of z' and Y ,  N and k 
must vary with ( x , y )  such that N / ( o h 2 )  and kh/N are constant. 

Figure 2. Geometry of test cases and coarse grid consisting of 63 nodes and 96 elements. The specified tidal amplitude is lo; 
values for r l r r 2  and the bathymetry are given in the text. The solid no-flux boundary is indicated by the hatched lines 
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- - - 
0 . 7 s  

The first test was one introduced by Gray and Lynch17 and is illustrated in Figure 2. The 
bathymetry is given by h = hor2, and a constant tidal amplitude c0 is prescribed on the open 
boundary. Parameters are 

rl  = 60,96Om, 

r2 = 152,40Om, 

h, = 3.048rf m- ', 
5, = laom, 

a= 1.41 x 10-4s-1, 

kh/N = 00 (no slip), 

w h 2 / N  = 10, 

f = O .  

In Figure 3 we show plots of against z along two different radial lines, compared with the 
analytic solution. The accuracy is comparable to the analogous two-dimensional results obtained 
previously. 

I I I I I I I I I 1 
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A more interesting test is obtained on this grid by varying to along the open boundary. In 
Figures 4(a), (b) we show contours of I i I obtained with io = cos (28) such that high water occurs for 
8 < 45" when low water is occurring for 8 > 45". Results are reasonable, although the grid is too 
coarse-only 16 elements per wavelength in the 8 direction. Figure 4(c) shows results obtained by 
doubling the resolution-the finer grid appears in Figure 5. Sample plots of 151 against r are given 
in Figures 4(d) and (e) for the two grids and provide a better quantification of the error. The 
maximum error occurs at r = r I  where only the natural boundary conditions are imposed on i, 
whereas the error vanishes at r = r2 where Dirichlet conditions are imposed. Vector plots of V are 
given for the fine grid in Figure 6 (numerical) and Figure 7 (analytic), at three different vertical 
levels. The agreement is quite satisfactory. In Figure 8 we show V, and V, against Z at a single point 
in the mesh, at several points in the tidal cycle. Again the agreement is very satisfying. Generally the 
velocities show a phase lead at the bottom relative to the top, as pointed out by Lynch and 
Officer." This is manifest in the veering with depth as shown in Figure 9. 

A third test case involves the same geometry with a steady, uniform wind directed everywhere 
parallel to 8 = 45". As in Reference 14, the special boundary condition 

results in 0 = 0 everywhere (analytically) when the bathymetry is constant and f = 0 .  We solved 
this problem on the fine grid with h increased to 50m everywhere, and obtained essentially perfect 
results. A plot of appears in Figure 10 and agrees with the analytic solution to five significant 
figures. Computed values of 0 were of the order of lO-'m/s; by contrast, velocities at the surface 
were of the order of 05m/s. Plots of V at different levels appear in Figure 11.  Since V i  is essentially 
exact and there is no vertical discretization error, the computed V ( Z )  is exact also. Figure 12 shows 
the V ( Z )  at a selected mesh point. 

Finally, we added rotation equal to a latitude of 45"N and closed the boundary at 
r = r , ( P - f i = O ) .  (At 8=45" we enforced [ = O  to remove the arbitrary constant from the 
solution.) As in the previous case, the analytic solution has g Vy = Y' = constant and thus P = 0 
everywhere. As above, our numerical P was of the order of lO-'m/s. Figure 13 shows the 
expected slight rotation of V i  relative to the above case (see equation (38) with f # 0). Plots of V 
appear in Figures 14 and 15, with the surface currents at roughly 45" from the wind direction. 
The veering with depth is also illustrated in Figure 16. 

VERTICAL DISCRETIZATION ERROR 

The results above demonstrate the capabilities of a finished three-dimensional model. The major 
limitation of this model is our inability to solve the periodic diffusion equation (9) with variable 
N ( Z ) .  To overcome this we solve (9) numerically, for arbitrary N ( Z ) ,  thereby adding much more 
generality at the expense of an additional discretization error. The horizontal discretization error 
present in the above solutions has been studied ex tens i~e ly . '~ -~~  Thus we present here a brief study 
of the vertical discretization error alone, with the objective of defining some rules of thumb for 
establishing the vertical grid spacing A Z .  (In practice of course, the horizontal discretization also 
affects the error in the vertical:) 

As above, we take the simplest case, dN/dZ = 0, and solve (9) on equal-length linear elements 
with integral lumping. Our measure of error is based on the bottom stress parameter z: 
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8.6 I I I I I I 
68 88 180 128 148 160 

8 .6  ' I I I I I 
60 80 188 128 148 168 

Figure 4. Tidal amplitudes in 0.1 m intervals for prescribed tidal amplitude lo = cos(20) at r = r z .  (a) Numerical result with 
the coarse mesh; (b) analytic result interpolated on the fine mesh (Figure 5); (c) numerical result with the fine mesh; (d) 
comparison ofanalytic tidal amplitude(so1id lines) with numerical solutions as a function ofr for 0 = O(indicated by the '+') 
and for 0 = A0 (indicated by the ' x ') on the coarse mesh; (e) comparison of analytic tidal amplitude (solid lines) with 
numerical solutions as a function of r for 0 = 0 (indicated by the ' +') and for 0 = 2A8, (indicated by the ' x ') on the refined 

mesh. Note that 6'-spacing on the refined mesh (AO,) is half that of the coarse mesh (Ae,) 
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t 

E 
Y 

30.5 61.0 91.4 121.9 152.4 

Km 
Figure 5. Relined mesh with 221 nodes and 384 elements. The node labeled ‘A’ is used for sampling velocity profiles 

discussed in later sections 

Herein T“ is simply computed from the numerical solution according to (21), whereas z, is evaluated 
exactly, as in Reference 11, equation (33). There are three dimensionless parameters: 

6 
Az’ 

n=- - 

in which 6 is the ‘skin depth’ or e-folding depth for periodic diffusion: 

6 - J ( $ ) .  

With these definitions the actual number of elements used is 

(534 

(54) 

(55 )  
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L’. - .4- 

Figure 6. Numerical velocities at t = 0 forced by lo = cos (20) at the surface (a), at mid-depth Z = 0.4(b) and one level above 
the bottom (c). The maximum velocity is 0.1814m/s in (a), 0.2328m/s in (b) and 0.2223m/s in (c) 

Figure 7. Analytic counterpart of Figure 6. The maximum velocity is 0.1824m/s in (a), 0.2336m/s in (b) and 0.2256m/s in (c) 
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0 . 8  
0 0 . 0 8  HOURS 
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- 0 . 4  

& 
1 
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-0 .6  

- 0 . 0  
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- 0 . 6  - 0 . 4  - 0 . 2  0 . 0  0 . 2  0 . 4  0 . 6  
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0 8.00 HOURS 

X 3 . 1 8  HOUPS 

A 6.20  HOURS 

0 9.30 HOURS 

BOTTOM DEPTH= 

9.33 METERS 

v-velocity (m/sec) 
Figure 8. Comparison of exact (solid lines) and numerical velocity profiles at four times in the tidal cycle at mesh-point 

A (see Figure 5):(a) u-component; (b) u-component 



- 
-0.05 - - - - - 
-0.10 

Figure 10. Elevation response (in metres) to steady wind forcing in the f3 = 45" direction without rotation 

I I I I  I l l 1  I I I I  I I I I  I l l 1  I I I I  



THREE-DIMENSIONAL HYDRODYNAMICS ON FINITE ELEMENTS, PART I 887 

Figure 11. Numerical velocity fields in response to steady wind-forcing without rotation at the surface (a), at mid- 
depth 2 = 0.4 (b) and one level above the bottom (c). The maximum velocity is 0.5122 m/s in (a), 0.0549 m/s in (b) and 

0~1019m/s in (c) 

and h < 6  for W<2.  
Plots of E against n appear in Figures 17(a)-(d), for various values of W and K .  Second-order 

convergence is apparent in all cases, as expected for equal-length linear elements. Generally higher 
K results in higher errors, with a limiting no-slip case realized at K = 100. At that limit the plots are 
easily explained by two rules: 

(a) High frequency: for W 10, E depends on n alone, irrespective of W. Effectively the 
resolution of the skin-depth controls the error. In this range n 2 10 provides E < 

(b) Low frequency: for W < 3, E depends on m alone. This is apparent in Figure 17(d) from the 
half decade horizontal shift between W = 1 and W = 0.1, and is clarified in Figure 18 where E 

is plotted against m. In this range the resolution of depth controls E,  and m > 10 provides 
~ 2 . 5  x 10-3. 
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BOTTOM DEPTH= 

58.0 METERS 

t 
-0 .2 -8. 1 8 .0  0 . 1  0.2 8.3 8.4 0 .5  

u-velocity (m/sec) 

BOTTOM DEPTH= 

58.8 METERS 

v-velocity (m/sec) 
Figure 12. Analytic (solid lines) and numerical (circles) vertical profiles of velocity at mesh-point A (see Figure 5): 

(a) u-component; (b) u-component 



Figure 13. Elevation response (in metres) to steady wind forcing in the 0 = 45" direction with rotation; Coriolis parameter 
evaluated for a latitude of 45"N 

Figure 14. Numerical velocity fields in response to steady wind-forcing with rotation at the surface (a), level 3 below the 
surface Z = 0.2(b) and level 5 below the surface 2 = 0.4(c). The maximum velocity is 0.1842m/s in (a), O.O319m/s in (b) and 

0.0271 m/s in (c) 
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Figure 15. Analytic (solid lines) and numerical (circles) vertical profiles of velocity at mesh-point A for the steady wind- 
driven case with rotation (see Figure 5); (a) u-component; (b) u-component 



THREE-DIMENSIONAL HYDRODYNAMICS ON FINITE ELEMENTS, PART I 

h 

u 0.1-  
01 
VI - 
\ 
E - 
v 

n 

! 0 . 0 -  

- 
4- - - 
u 

01 
> - 
- - 
a 
r - + 

3 - 
.- 
N-0.1- a - 

- 
- 

-0 .2  

891 

I I I I ( I I l l ( l r l l ( l l l ~  

-0 .2  -0. 1 0 . 0  a. 1 0 . 2  

Table I. Vertical gridding rules 

Discretization rules 

Max E Min 6/Az Min hlAz 

10-2 3 5 
10-3 10 16 

TEST CASES: DISCRETE VERTICAL STRUCTURE 

For the general case of variable N ( Z ) ,  we use the fully discretized model with computational steps 
as follows: 

(a) Compute P:,2(Z) under each horizontal node using integral lumping on linear finite 

(b) Solve (45) for 5. Identity (61) in the appendix may be used to avoid the averaging. 
(c) Reconstruct V i ( Z )  beneath each node via (46) subject to the boundary conditions. Here P:,2 

Repetition of all the previous test cases using ten equal-spaced elements in Z produced 

elements. 

are saved from the first step rather than recomputed. 
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. 

Figure 18. Error of the bottom stress parameter T as a function of the number of nodes m in the vertical. The curve with 0 
correspondstoW=O.l;the x t o w =  1.OtheA t o W = 3 , 1 ; t h e O  to W =  IO~O;andthe*toW=30.0.Thedashedlinehas 

a slope of - 2 

practically indistinguishable results. An example of the more visible discrepancies appears in 
Figure 19. 

For purposes of illustration, we discuss a final test involving a strongly stratified system in which 
there is no mixing across the pycnocline separating two otherwise homogeneous layers, i.e. N = 0 
at mid-depth (Figure 20). In this example, we show the model's versatility in treating regions of 
high vertical shears by increasing the resolution in the region near the pycnocline. The forcing is 
due to the tide on the refined grid (Figure 5), with lo = cos(28) prescribed on the open boundary. 
The bathymetry is quadratic as defined earlier and h,, k and o are unchanged. Although the tidal 
amplitude over the domain is similar to that obtained in the case of constant N (compare 
Figures 21 and 4(c)), the difference in the velocity fields at different levels is quite marked (compare 
Figures 22, 23 and 24 to Figures 6, 8 and 9). Figures 22(a), (b) and 23 show that the flow in the 
surface layer is perfectly uniform, and does not feel the bottom, owing to the absence of momentum 
transfer (or vertical friction) between the fluid beneath and above the pycnocline. Lastly the spiral 
observed in Figure 9 is present only in the lower layer of the strongly stratified case (Figure 24). 

FIELD APPLICATION: THE LAKE MARACAIBO SYSTEM 

In this section we discuss some results of the methods presented thus far applied to a realistic 
situation, specifically to the Lake Maracaibo (LM) system. The LM system is located in the 
north-west corner of Venezuela (see Figure 25) and is composed of 4 smaller bodies of water: 
(i) the Gulf of Venezuela which is approximately 180 km long and 75 km wide and averages 30m 
in depth; (ii) the Bay of EI Tablazo which is 27 km x 24km and averages 2.5m in depth; (iii) 
the Strait which is 37 km long x 10 km wide and 10m deep; and (iv) Lake Maracaibo itself which 
is 120 km long (north-south) and 1 10 km wide (east-west), averaging 25 m in depth. 

Studies of the semi-diurnal tidal regime in the LM system have uncovered a behaviour 
resembling that of a standing wave produced by the propagation of the tide through the Gulf of 
Venezuela and reflecting from the head of the Lake. Although the tides in the Caribbean (in the area 
of Cuba, Santo Domingo, Puerto Rico and the Venezuelan coast) are mixed but predominantly 
diurnal, the measurements at the mouth of the Bay of EI Tablazo indicate that the tide there is still 
mixed but predominantly semi-diurnal. This phenomenon has been recognized as a resonance 
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Figure 19. Comparison of a fully analytical solution for the stcady wind-driven case with rotation and fully numerical 
solution, in which the vertical is solved on finite elements: (a) u-velocity; (b) u-velocity. Compare with Figure 15, where the 

vertical was treated analytically 
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Figure 20. Vertical profile of the depth-dependent vertical eddy viscosity 

Figure 21. Numerically computed tidal amplitude with depth-dependent vertical eddy viscosity. The contour interval is 
0.1 m. The prescribed tidal amplitude on the open boundary is lo = cos(28) 
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Figure 22. Numerical velocities at t = 0 forced by lo = cos(20) with depth-dependent viscosity at the surface (a), at mid- 
depth Z = 0.4 (b) [identical to (a)] and one level above the bottom (c). The maximum velocity is 0.3584 m/s in (a), 0.3584 m/s 

in (b) and 0.3946m/s in (c) 

effect on the semi-diurnal tides induced by the dimensions of the Gulf of Venezuela.24325 
Specifically, the amplitude of the M ,  component grows from lOcm at the entrance to the Gulf, to 
41 cm at EI Tablazo Bay. The tide retains its semi-diurnal character across EI Tablazo and the 
Strait of Maracaibo. High water is felt almost synchronously along this stretch, is delayed by about 
1 h relative to the high water in the Gulf and has a range that diminishes progressively to the south. 
Whereas at the northern end of the Lake the tides are greatly reduced, at the southern end the semi- 
diurnal character of the tide is restored, its amplitude increasing to 3-4 cm. The observed time of 
high water at that point is 6 h after high water in the Gulf of Venezuela, i.e. about 180” out of 
phase for the M ,  tide. 

The mesh used in our studies of the LM system is shown in Figure 26 and contains 718 elements 
and 433 nodes. Two cases are considered: (i) a tidal case where a constant amplitude (10 cm) M ,  tide 
with a 10” linearly varying phase is prescribed across the north-eastern seaward boundary of the 
Gulf of Venezuela (the western side leading”) and (ii) the steady, wind-driven circulation due 
to a north-easterly wind. No-normal-flow conditions were imposed on the solid boundaries, and 
the bottom bathymetry is that shown in Figure 25. 
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Tidal response 

First, we present results from the M 2  tidally forced flow, with constant N (  = 0.0025 m2/s) and 
analytic solutions for the vertical structure (as in the test cases, the numerical treatment of the 
vertical showed no noticeable difference). The expected resonance of the tide in the Gulf of 
Venezuela and its overall amplitude were reproduced (Figure 27). Also, the phase of the response 
(Figure28) showed the observed 180" shift between the Gulf and the Lake, as well as the 
amphidrome just south of the Strait of Maracaibo found by Molines and F ~ r n e r i n o . ~ ~  Both the 
observed and the model tidal amplitudes decrease in the Strait of Maracaibo and are under 5 cm in 
the Lake itself. Currents 6.2 h after the high tide at the open boundary are shown in Figures 29 (top 
level) and 30 (bottom level). At this time, the currents are flowing seaward in the Gulf and into the 
Lake in the Strait. The highest currents occur in the Bay of EI Tablazo and the Strait of Maracaibo 
and can be greater than 50 cm/s; the smallest tidal currents are found in the Lake itself and are of the 
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Figure 25. Topography and place names of the Lake Maracaibo system taken from Reference 24. The depth contours 
are in metres 



900 D. R. LYNCH AND F. E. WERNER 

5 1 . 9  183. s 155.8 207.7 259.7 

K r n  

Figure 26. Mesh used in the Lake Maracaibo system studies with 433 nodes and 718 elements 

order of 2-5cm/s. A reduction in magnitude with depth is seen in the velocity (largest velocities 
of the order of 20-30 cm /s). The flow patterns agree with the observed anti-node of the M ,  tide 
located in the Bay of EI Tablazo. Thus in this region, the convergence and divergence of the M ,  
tidal currents causes the above mentioned circulation features, in which flows south of EI Tablazo 
Bay may be southward at the same time that the flows in the passages from the Gulf of Venezuela to 
EI Tablazo Bay are northward (Reference 26, Figure 7). 

Figures 31 (top level) and 32 (bottom level) show the tidal velocities at  the surface and at the 
bottom, 3.1 h into the tidal cycle (after the high tide on the open boundary). This point in time 
shows that in addition to the decrease in magnitude between the surface and the bottom, there can 
be a reversal in the flow direction between the two levels at certain locations. Runs with a depth- 
dependent but continuous N presented generally similar features and are not shown. 



Figure 27. Amplitude response for the M ,  tide. Location of the + indicates position of the minimum amplitude. Elevation 
in metres, the contour interval is 0.042 

Figure 28. Phase response of the M ,  tide. The wave propagation about the amphidrome is counterclockwise. Refer to 
Figure 27 for the position of minimum tidal amplitude. The contour interval is 5"  
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Steady wind-driven flow 

The model results for the steady wind-forced case with a north-easterly wind of magnitude 
1 dyne/cm2, constant N (  = 0.0025rn2/s) and analytic vertical structure are shown in Figures 33(a), 
(b) and (c). The seaward boundary was fixed at [ = 0. The difference between the depth-averaged 
velocity field (Figure 33(a)) and the flow in the surface and bottom layers (Figures 33(b) and (c)) 
is striking. Note that, whereas the mean flow shows a recirculating gyre in the region of the Gulf 
and the Lake itself, the surface velocities follow the direction of the wind stress and the bottom 
flow is directed opposite to the surface velocity field. Measurements by Parra-Pardi et aL2’ show 
the counterclockwise circulation in the Lake, and Zeigler2* infers a counterclockwise circulation 
for the Gulf of Venezuela. 

Figure 33. Steady state current response to north-easterly winds of 1.0dynejcm’ with constant N .  Vertically averaged 
velocity (a), top level (b) and one level above the bottom (c). The maximum velocity is 0.2631 m/s in (a), 0.6428 m/s in 

(b) and 0.1518m/s in (c) 
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SUMMARY AND DISCUSSION 

The model presented here provides full three-dimensional solutions for linearized periodic 
hydrodynamics. It is useful as a diagnostic tool, as a predictive tool within the limits of the 
linearization; and as an initial condition generator for non-linear time-stepping models. 
Methodologically the model synthesizes established and cost effective concepts for solving the 
vertically averaged equations with a simple and general approach to the representation of the 
vertical. From an economical standpoint the model requires only a two-dimensional Helmholtz 
solution for a single scalar unknown, plus a number of tridiagonal solutions. Accuracy relative to 
analytical solutions is very satisfying with reasonably coarse meshes. The interchangeability of the 
analytic and numerical vertical representation is especially appealing, and the more general 
numerical option creates no major penalty in run time, memory or accuracy provided that the 
simple gridding rules are observed. 

A considerable portion of the most dominant observed features of the M ,  tide in the LM system 
has been explained by this model. The model tidal amplitude, its propagation through the system 
and the predicted velocities all agree with available field measurements: these include the resonance 
in the Gulf of Venezuela, the nodal and antinodal line in the Bay of EI Tablazo, the phase difference 
between the Gulf and the Lake (including the occurence of the amphidromic point in the Lake). 
Similarly, the wind-driven gyres in the two main basins of the system are captured by the model. 
Further comparisons with flow and sea-level measurements is limited at this time since in reality 
additional effects due to stratification and other non-linear processes will also have to be taken into 
account. A complete treatment of some of these effects is under way and will be the subject of a 
forthcoming paper. 
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APPENDIX 

Here we record some identities relative to the vertical structure and the bottom stress which are 
useful when o # 0. Starting with the homogeneous form of equation (9), 

we integrate from Z = - 1 to Z = 0, to obtain 

(57) 

Equation (57) may be used to eliminate the need for ,ii in expressions (24) and (25) for z and a, such 
that only ,u and P need be evaluated. The identity (57) also governs numerical solutions to (56) 
obtained by any weighted residual method of the form 

provided that the weighting functions sum to unity everywhere (as in most common Galerkin finite 
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element solutions). This can be seen by summing all of the equations (58),  in which case C $i + 1, 
and C(dc$i/dZ)-,O, and identity (57) follows. Use of (57) yields an additional identity among the 
B and A matrices defined in equations (14) and (15): 

jw Ah 
k ‘  B -  A( - 1) = ~ 

Thus the expression (24) for T may be equivalently stated as 

jco A 
B -  A ‘  

T=- 

(59) 

Similar properties may be derived in the same way for PI@) and P 2 ( Z )  whether obtained 
analytically or by a weighted residual method with C c$i = 1 : 

Thus equations (21) and (22) may be expressed equivalently: 

u = y  1 - - P J  - 1) - -Pz(  - l), 
JU ‘[ : 3 :  

and the need to compute is eliminated. 
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